INTRODUCTION AND OBJECTIVE: Decreased adherens junction protein E-cadherin has been implicated in the development and progression of benign prostatic hyperplasia (BPH). Immunostaining has shown decreased E-cadherin to be associated with inflammation in both BPH and the aged mouse prostate. Homozygous E-cadherin deletion in murine prostate epithelium induced prostate inflammation and bladder overactivity, however, E-cadherin is reduced in BPH, but not completely lost. This study was performed to examine the impact of a reduced E-cadherin expression in combination with advanced age.

METHODS: The PSA-CreERT² transgenic mouse strain expressing tamoxifen-inducible CreERT² recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B₆.129-Cdh₁^{tm2Kem/J} mouse to generate bigenic PSA-CreERT²/Cdh₁^{+-/-} mice. Hemizygous deletion of E-cadherin in the prostate luminal epithelial cells of male mice was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age) and mice were aged to 24 mos. Immunostaining analyses and cystometry were used to determine the impact of aging and Cdh₁ hemizygosity on the prostate and bladder.

RESULTS: Aged Cdh₁^{+-/-} mice exhibited increased prostatic inflammation, stromal hyperplasia and bladder overactivity compared to age-matched controls.

CONCLUSIONS: Aged mice with prostate-specific hemizygous loss of E-cadherin developed prostatic defects and lower urinary tract symptoms similar to BPH/LUTS. This suggests that decreased E-cadherin expression may synergize with aging to induce prostatic inflammation and bladder overactivity.