

Exosome-Induced Genitourinary Regeneration in a Rabbit Model of Mesh Exposure: A Proposal

Cassandra K. Kisby, MD MS1; Cindy L. Amundsen1, MD; Shyni Varghese, PhD2 ¹Department of Ob/Gyn, ²Department of Orthopedics, Biomedical Engineering, Mechanical Engineering and Materials Sciences **Duke University, Durham, NC**

Abstract

Importance: Surgical implantation of polypropylene mesh is a widely accepted and durable treatment for women experiencing stress urinary incontinence and pelvic organ prolapse; however, these surgeries carry a 1-11% risk of mesh exposure in the vagina, bladder, or urethra. Treatment often requires surgical mesh excision. In pilot studies using a porcine model, I have shown that exosome injections (purified exosome product; PEP) incite tissue regeneration and resolve vaginal mesh exposures.

Objectives: (1) replicate the pilot studies in a rabbit model of vaginal mesh exposure, evaluate (2) rates of bladder mesh exposure resolution following PEP injection versus sham and (3) the efficacy of PEP as a preventative therapy for mesh exposures.

Methods: 45 New Zealand white rabbits will be randomly divided into 3 groups:

- 1. Vaginal mesh exposure: Created via sacrohysteropexy technique, injected with PEP or sham at 2 weeks
- 2. Bladder mesh exposure: Created via intentional cystotomy with a mesh sling, injected with PEP or sham at 2 weeks
- 3. Mesh exposure prevention: A high-risk for mesh exposure model will be used and treated with PEP or sham at the time of implantation

Results: Forthcoming

Conclusions: This novel study will build upon the prior evidence utilizing an exosome regenerative platform for vaginal mesh exposures. The proposed study will utilize a larger sample size and evaluate the breadth of application to inform clinical translation.

Purified Exosome Product

What are exosomes?

Transporter vesicles that carry mRNA, antioxidants, signaling proteins

They activate host paracrine/autocrine pathways and mesenchymal precursors

Purified Exosome Product (PEP)

GMP grade, produced by RION LLC

Harvested from pooled human plasma

Shelf stable

Reconstituted in sterile water + bovine collagen

Figure 1: Preliminary Study Methods

B. Intervention, Day 7: Surgical Closure ± PEP Injection (Left), Injection of PEP Only (Right)

Figure 2: Preliminary Study Results

Closure only PEP+Closure PEP only Wildtype

Vaginal healing 4 weeks after intervention. Note: white dotted areas represent the areas of underlying mesh. Wildtype (left) is an un-instrumented animal of equivalent age/weight.

Masson's Trichrome, 4X: Representative tissue sections by group (A).

Epithelium: Cytokeratin is a marker for epithelium; Collagen III; DAPI is a nuclear marker. Epithelial thickness is noted to be thin/fragmented in the closure only group, and higher in the PEP-treated groups (B).

AIM 1 - Vaginal Mesh, Rabbit Model

AIM 2 – Bladder Mesh Exposures

Cystoscopic view of

bladder mesh exposure

AIM 3 – Mesh Exposure Prevention

Does PEP injection aid in bladder mucosa regeneration and mesh exposure resolution?

Outcomes

- For AIM 1 & 2: Sacrifice and tissue analysis at 6
- For AIM 3: A vaginal exam under anesthesia will be performed at 6 weeks & 12 weeks to assess for presence of mesh exposure
- Following intervention, all animals will be dosed with 2'-Deoxy-5-ethynyluridine (EdU) to track cellular proliferation
- Mesh exposure resolution:
 - Yes/No for complete exposure resolution or
- surface area resolution for incomplete resolution Fig 3
- H&E and Masson's trichrome stains
- IHC will be used to quantify:
- epithelial thickness
- capillary density
- macrophage ratio
- cellular proliferation/regenerating proportions (EdU)

Figure 3: Measuring surface area with ImageJ software

Significance

Use of PEP as non-surgical management of mesh exposure

- Avoid repeat surgery/associated risks
- ➤ Prevent resection of mesh/return of symptoms
- Remove stigma surrounding use of mesh
- Future Directions: The authors plan to initiate a Phase I Clinical Trial

References

- Chermansky CJ, Winters JC. Complications of Vaginal Mesh Surgery. Curr Opin Urol. 2012. 22(4): 287-91.
- Mangir N, et. al. Landmarks in Vaginal Mesh Development: Polypropylene Mesh for Treatment of SUI and POP. Nat Rev Urol.
- Hessvik NP, Llorente A. Current Knowledge on Exosome Biogenesis and Release. Cell Mol Life Sci. 2018. 75(2): 193-208
- Behfar A, Terzic A. Regeneration for All: An Odyssey in Biotherapy. Eur Heart J. 2019. 40(13):1033-1035.

Funding: NIH-NIDDK K12DK100024 (KURe)

Implanted polypropylene mesh

Injection with PEP

or sham at the time of implantation

prevent mesh exposure?

Does PEP

injection