Inhibition of mitochondrial complex I influences the expression of inflammatory mediators in a human prostatic stromal cell line

Nnamdi Ihejirika, Teresa Liu, Laura E. Pascal, Donald B. DeFranco

Project Overview

Introduction and Objective

Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are extremely common in aging men. BPH is characterized by fibrosis and inflammation, however their role in BPH etiology is not well understood. Mitochondrial dysfunction is frequently associated with age-related diseases and stromal inflammation. We sought here to determine if disruption of mitochondrial complex 1 in prostate stromal cells could influence the expression of genes associated with fibrosis and inflammation. Our further objective was to see if this process could be reversed by administration of Nicotinamide mononucleotide (NMN), which restores NAD+ balance.

Methods

The prostate stromal cell line BHPrS1 was treated with rotenone to induce mitochondrial damage and then treated with NMN, to reverse the mitochondrial damage by increasing NAD+ biosynthesis. qRTPCR was utilized to determine the mRNA expression levels of markers associated with inflammation (COX-1, IL-6, IL-8) and fibrosis (collagen 1A1) in cells treated with rotenone and/or NMN. Immunofluorescence staining for smooth muscle marker calponin was performed to visualize the influence of rotenone on stromal cell differentiation.

Results:

COX-1 and IL-6 mRNA levels were increased, while IL-8 was decreased in response to rotenone treatment in BHPrS1 cells. While collagen 1A1 levels were altered, the results were not consistent. Calponin expression was decreased.

Conclusions:

Disruption of mitochondrial complex 1 induced an increase in inflammatory mediators COX-1 and IL-6 in BHPrS1 cells, suggesting that mitochondrial damage could induce an inflammatory response in prostate stromal cells. Furthermore, smooth muscle marker calponin was decreased by rotenone, suggesting that mitochondrial damage could contribute to stromal fibrosis in the prostate. The variable influence of rotenone stimulation on collagen levels and on the cytokines is something that must be further explored. It may be that collagen deposition is not part of the acute response to mitochondrial disruption. Taken together, these results suggest that mitochondrial disruption may play a role in BPH pathogenesis and that restoring NAD+ balance could have therapeutic potential for BPH treatment.

Funding

This work was funded in part by NIH grants U54 from NIDDK, DK112079 (DBD) and K12DK110022 (TL).