Introduction

Spinal cord injury (SCI) results in bladder dysfunction. Epidural kilohertz frequency spinal cord stimulation (KHF SCS) modulates lower urinary tract function in intact rats: Intact → Increases in bladder capacity, voiding efficiency, and external urethral sphincter (EUS) EMG. Hypersensitive → Increases in voiding efficiency and EUS EMG amplitude + Decreases in the number of non-voiding contractions.

Hypothesis:

KHF SCS will ameliorate bladder dysfunction following SCI.

Methods

Stimulation
- Spinal Cord: (1 kHz, 5 kHz, 10 kHz)
 - (20, 40, 80%) MT
 - 10, 30, 50 Hz 80% MT
- Sensory Pudendal: 10 Hz 60%, 2T

Cystometry
- Number & Amplitude
- NW/Cs
- (2) Bladder capacity
- (3) Voiding efficiency
- EUS EMG
 - (1) Burst duration
 - (2) Activity
 - (3) Average Amplitude

References

Summary

After SCI:
- Tonic EUS activity causes increased bladder capacity, non-voiding contractions, and decreased voiding efficiency.
- KHF SCS decreases tonic EUS activity allowing for decreases in bladder capacity, non-voiding contractions, and increases in voiding efficiency.

Afferent feedback from the EUS is inhibitory?

Conclusion

Potential mechanism of action → modulating afferent input from the bladder/EUS

KHF SCS may be a viable approach to restore bladder function after SCI.

Acknowledgements

The authors would like to thank Danielle Degosi, Khoa Do, and Celina Zhou for animal care support. Funding support for this work is provided by the CH Neilsen Foundation and the NIH-NIDDK K12DK100024 (KLuE).