LOSS OF OSTEOPONTIN FUNCTION PREVENTS THE DEVELOPMENT OF URINARY DYSFUNCTION IN E. COLI-INDUCED PROSTATIC INFLAMMATION

Petra Popovics1,2,3, Asha Jain1,2, Francesca Vani1,2, Hannah Ruetten1,2,4, Mark Cadena1,2,4, Kristen S. Uchmann1,2, Chad M. Vezina1,2, William A. Ricke1
1Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 2George M. O’Brien Center of Research Excellence, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 3K12 Kure, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 4Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI.

Background

Lower urinary tract dysfunction (LUTD) in men and associated symptoms (LUTS) including weak stream, nocturia, incomplete emptying, and intermittence or hesitant urination, can adversely affect the patient’s quality of life. The progression of LUTS has been linked to age-related changes including alterations in steroid levels, but there is a growing body of evidence demonstrating that chronic inflammation has a central role in its pathogenesis, in part, by stimulating prostatic fibrosis. Fibrotic pathology is associated with the accumulation of collagen fibers in the stroma and the rearrangement of the peripheral prostatic architecture often resulting in obstructive urinary symptoms. Current therapies do not target fibrosis; however, it is a key event in driving medical resistance to LUTS. Consequently, the development of novel medical strategies require a better understanding of the molecular aspects of this prostatic disease.

Our previous study identified osteopontin (OPN) as a novel gene in the pathogenesis of benign prostatic diseases. We identified, that osteopontin secretion is induced by inflammatory cytokines and it stimulates multiple cytokines and chemokines attracting immune cells and exacerbating inflammatory responses. In the current study we investigated whether prostatic fibrosis and urinary dysfunction induced by transurethral bacterial infection is attenuated in the absence of osteopontin.

Hypothesis

Figure 1: Proposed action of Osteopontin in the prostate. Osteopontin is secreted from prostate cells in response to inflammatory stimuli and exacerbates inflammatory reactions by triggering cytokines and chemokines from stromal cells leading to fibrosis.

Materials and Methods

- Transurethral instillation of uropathogenic E. coli: UT189 E. coli strain isolated from a human patient with cystitis was instilled with 100 uI culture with OD 0.9 from an overnight shaking culture. Control mice received PBS. The instillation was repeated 3 days later and urine was sampled next day. We determined that the susceptibility of WT and OPN-KO mice for bacterial colonization is similar by plating urine on agar plates.
- Void spot assay: mice were isolated in cages with filter paper for 4 hours weekly. Filter papers were imaged with UV epillumination and analyzed with Visi Whizard Imaging plugin.
- Measurement of collagen abundance: tissues were stained with picrosirius red and birefringence was measured using circularly polarized light. The number of green, red, orange and red pixels were calculated in ImageJ and added together to determine the proportion of total collagen/tissue area.

Results

Figure 2: Inflammation-induced collagen accumulation is significantly reduced in osteopontin knockout (OPN-KO) mice. Collagen abundance was increased in both dorsal (DP, A and B) and ventral (VP, C and D) prostate lobes in response to E. coli infection, but significantly reduced in OPN-KO mice. Mice were transurethrally instilled with E. coli 2 times, 3 days apart and euthanized 60 days after the first instillation. Prostate lobes were stained with picrosirius red and photographed under circularly polarized light. Collagen area was calculated with ImageJ and normalized to tissue area captured with bright field imaging. Values were averaged for 3 images/sample. Significance was calculated with one-way ANOVA followed by Tukey’s post hoc analysis. *p<0.05, **p<0.01, ***p<0.001.

Conclusions & Future Directions

Osteopontin is a key driver of inflammation-induced prostatic collagen accumulation and related urinary dysfunction

Future goals:
- Our preliminary experiments showed that OPN-KO mice reach the same level of bacterial colonization as wild type mice. We aim to decipher whether the development of acute inflammation and fibrosis are also affected in OPN-KO mice or whether the improvement in OPN-KO mice is related to faster resolution of fibrosis.
- We will study periurethral collagen accumulation in wild type and OPN-KO mice which can be directly linked to urinary dysfunction.
- We will identify the key molecular pathways affected in OPN-KO mice with RNaseq.
- We will test osteopontin-targeting therapies in E. coli-induced and other prostatic inflammation mouse models.

Acknowledgements

This study was supported by NIH NIDDK K12 DK10022-06 (to P.P.) and NIH U54 DK104310 (to W.A.R.).

References

popovics@wisc.edu @PopovicsPetra

Figure 3: E. coli-induced urinary dysfunction does not develop in osteopontin knockout (OPN-KO) mice. Urinary function was measured using void spot assay in which an increase in void spot frequency indicates dysfunction. During weekly measurements, we found a significant increase in frequency in wild type (B6) E. coli instilled mice at day 33, but not in OPN-KO mice. Significance was calculated with one-way ANOVA followed by Tukey’s post hoc analysis. *p<0.05, **p<0.001.

Loss of osteopontin function ameliorates inflammation-induced prostatic fibrosis and urinary dysfunction

LOSS OF OSTEOPONTIN SUPPRESSES FIBROSIS IN MOUSE PROSTATE LOBES