Immunohistochemical analysis of epithelial cell composition in the mouse prostatic urethra

Asha Jain1,2, Petra Popovics1,2,3, Christian Ortiz-Hernandez1,2,4, Teresa T. Liu1,2, William A. Ricke1,2

1Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
2George M. O’Brien- Center of Research Excellence, University of Wisconsin, School of Medicine and Public Health, Madison, WI
3K12 Kurz, School of Veterinary Medicine, University of Wisconsin-Madison, WI
4Department of Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, WI

Abstract

Benign Prostate Hyperplasia (BPH) is non-malignant prostate enlargement that can result from epithelial cell proliferation, which constricts the urethra and causes lower urinary tract dysfunction (LUTD). The purpose of this study was to identify whether the proportion of luminal and basal cells change in aging and steroid hormone-induced (T+E2) mouse models of LUTD. Immunohistochemistry was performed on prostatic urethral tissue using basal cell marker p63. In urethrotomy, there was significantly higher percentage of luminal cells in aging (51.43%) versus young (31.84%, p=0.0125). There was an increasing trend in percentage of luminal cells in T+E2 (37.75%) versus UNT (31.84%, p=0.1115). This suggests that there is an increase in prostate luminal cells in the urethrotomy in LUTD.

Methods and Materials

Tissue Selection
- Tissue sections were taken at the midpoint of the prostatic urethra from 3-month-old untreated (UNT) (n=4), 24-month-old UNT (aged mice, n=4), and 3-month-old mice treated with testosterone and estradiol pellets for 1 month (T+E2, n=7).

Immunohistochemistry (IHC)
- Standard IHC protocol was performed to label p63-positive basal cells and counterstained with hematoxylin to label nuclei.
- Epithelial cells negative for p63 were counted as luminal cells.

Epithelial cell composition in periurethral prostate glands does not change in LUTD.

Results

The purpose of this study is to identify whether the proportion of luminal and basal cells change in aging and steroid hormone-induced mouse models of LUTD.

I hypothesize that the luminal ratio will increase in the mouse prostatic urethra in LUTD consistent with the cellular composition observed in BPH.

Objective and Hypothesis

Epithelial cell composition in periurethral prostate glands does not change in LUTD.

Number of periurethral prostate glands does not change in LUTD.

Results (cont.)

Discussion

Results suggest there is an increase in prostate luminal cells in the urethrotomy with LUTD. This could be an indication of luminal cell hyperplasia.

- Basal cells are present in mouse prostate glands, suggesting that glands in the prostatic urethra have similar histology to mouse prostate lobes.
- We did not identify basal cell hyperplasia in either LUTD models indicating the need for the development of new strategies to study this pathological phenotype.

Future directions
- Repeat experiment with larger sample size.
- Explore new lines of interest to entire prostatic urethra, and analyze difference in prostatic ducts derived from different prostatic lobes.
- Perform IHC with proliferation markers.

References

1. What is Benign Prostate Hyperplasia (BPH)?¹ What is Benign Prostatic Hyperplasia (BPH)?¹ Urology Care Foundation, www.urologyhealth.org/urologic-conditions/benign-prostatic-hyperplasia (bph).

Acknowledgements

Special thanks to Dr. Petra Popovics, Christian Ortiz-Hernandez, Dr. Teresa Liu, Dr. William Ricke, and the rest of the Ricke Lab.

I would also like to thank Dr. Chad Vezina, the Director of the Summer Program for Undergraduate Urology Research for the opportunity to participate in the program. This study was supported by NIH U54DK104310.

Figure 1: The mouse prostatic urethra. The prostatic urethra (P) is surrounded by prostate glands (*), which are connected to the prostate lobes (L) by ducts (*). This region of interest to entire prostatic urethra was calculated and averaged for each experimental group.

Figure 2: Percentage of epithelial cell types in prostate glands. There is a near-significant increase in the percentage of luminal cells in T+E2 (62.84%) versus UNT (55.40%, p=0.0554) mice. There is no significant difference in epithelial cell percentage between young and old mice (p=0.467). Student’s t-test was used to determine if cell percentages were different from control in either of the two models. Error bars show SD.

Figure 3: Percentage of epithelial cell types in urethrotomy. There is a significantly lower percentage of basal cells in 24 month mice (48.57%) in comparison to 3 month mice (68.16%, p=0.0183). Likewise, there is a significantly higher percentage of luminal cells in 24 month mice (51.43%) in comparison to 3 month mice (31.84%, p=0.0115). There was an increasing trend in percentage of luminal cells in T+E2 treated (37.75%) versus untreated (31.84%, p=0.1115). Error bars show SD.

Figure 4: Number of prostate glands surrounding the urethral lumen. There is no significant difference in the number of prostate glands between young and old mice (p=0.2389) or untreated and T+E2 treated mice (p=0.8544). Error bars show SD.

Figure 5: Number of periurethral prostate glands does not change in LUTD.

Figure 6: Percentage of epithelial cell types in prostate glands showing a significant increase in the percentage of luminal cells in T+E2 (62.84%) versus UNT (55.40%, p=0.0554) mice. There is no significant difference in epithelial cell percentage between young and old mice (p=0.467). Student’s t-test was used to determine if cell percentages were different from control in either of the two models. Error bars show SD.