Never in the Urinary Tract –
Causing Urinary Tract Malformations: the case of $Tbx6$

Greg Whittemore, MS4
MD/MS Candidate
Columbia University Vagelos College of Physicians and Surgeons
Mentors: Cathy Mendelsohn and Simone Sanna-Cherchi

Columbia University P20 Developmental Center for Benign Urology Research
Congenital anomalies of the kidney and urinary tract (CAKUT): Conditions and Epidemiology

Genetics of CAKUT

- **Point mutations**: 6–20% of CAKUT caused by single-gene defects with over 50 genes identified thus far (most commonly *HNF1B, PAX2, EYA1, SALL1* and others)

- **Structural variants / Copy number variations** (CNVs; i.e. deletions or duplications of germline DNA often affecting multiple genes): additional 2-10% of CAKUT caused by large CNVs associated to genomic disorders (ex. 22q11.2, 17q12, and others)

Verbitsky & Westland, *Nat Genet.* 2019
Sanna-Cherchi & Westland, *J Clin Invest.* 2018
Standard paradigm for gene identification in humans

- **Step 1**: unbiased, hypothesis-free genetic study to localize a gene or region of the genome associated with the phenotype (linkage studies in families, GWAS, exome or genome sequencing…)

- **Step 2**: candidate gene selection / prioritization. Classically it has been recognized that, if a gene causes a phenotype when mutated, it should be expressed in the tissue where the phenotype occurs

- **Step 3**: generation of a vertebrate model that recapitulates the human phenotype
CNV study in 2,824 CAKUT cases and 21,498 controls identifies the chromosome 16p11.2 microdeletion syndrome as a cause of CAKUT

Common phenotypes with 16p11.2 microdeletion:
- Congenital scoliosis
- Spondylocostal dysostosis
- Autism spectrum disorder

Classic association between congenital scoliosis and CAKUT

Verbitsky & Westland, Nat Genet. 2019

Hanson et al., Biol Psychiatry. 2015
Vitko, Cass & Winter, J Urol. 1972
Defining a driver for CAKUT at the 16p11.2 locus: deletion mapping

Verbitsky & Westland, Nat Genet. 2019
Plausibility for *TBX6* as a CAKUT gene

- Involved in early mouse development
- Human truncating mutations associated with congenital scoliosis
- Heterozygous mutations are very rare in humans

Mouse *Tbx6* allelic series

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tbx6<sup>+</sup>/+</td>
<td>wild type</td>
</tr>
<tr>
<td>Tbx6<sup>rv</sup>/+</td>
<td>wild type</td>
</tr>
<tr>
<td>Tbx6<sup>+</sup>/–</td>
<td>minor vertebral abnormalities</td>
</tr>
<tr>
<td>Tbx6<sup>rv</sup>/–</td>
<td>fused ribs and vertebrae</td>
</tr>
<tr>
<td>Tbx6<sup>rv</sup>/<sup>rv</sup></td>
<td>severe fusion of ribs and vertebrae</td>
</tr>
<tr>
<td>Tbx6<sup>–</sup>/–</td>
<td>lethal E9.5</td>
</tr>
</tbody>
</table>
Severe reduction in $Tbx6$ gene dosage causes CAKUT with complete penetrance \rightarrow supporting causality

Verbitsky & Westland, *Nat Genet.* 2019
Milder mutations recapitulate CAKUT phenotypes in 16p11.2 deletion including obstructive uropathy and duplicated ureters→ supporting pleiotropic effect

Verbitsky & Westland, Nat Genet. 2019
Analysis of the lower urinary tract for CAKUT phenotypes identifies anorectal malformations → further pleiotropy

<table>
<thead>
<tr>
<th>Wild Type</th>
<th>Tbx6^{rv/ rv}</th>
<th>Tbx6^{rv/-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E15.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Bladder
- Hindgut
- Urethra
- Anus
Additional lower urinary tract defects that correlate with urethra malformations and PUV
Initial conclusions and questions

• *TBX6* reduced gene dosage is the cause of CAKUT in patients with the chromosome 16p11.2 microdeletion

• *Tbx6* reduced gene dosage has a profound pleiotropic effect similar to the 16p11.2 microdeletion causing upper and lower urinary tract defects

• **Open question**: How do *TBX6* mutations cause CAKUT and what are the mechanisms for such pleiotropic effect?
Tbx6 is expressed in the intermediate mesoderm surrounding the cloaca at E9.5 but **NEVER** in the developing urinary tract.

How is it possible?
Some hint: Does the nephric duct insert into the cloaca?
Tbx6 gene dose reduction affects the position & angle of ureteric bud formation and disrupts the normal interactions between the ureteric bud and nephric progenitors. Mendelsohn, *Organogenesis*. 2009
Rationale for urinary tract defects in *Tbx6* mutants

- *Tbx6* appears to be critical for insertion of CND into the cloaca
 - Expressed at the right place at the right time and gene dose reduction results in failure of CND insertion
 - CND insertion is critical for normal UB induction and insertion of ureter into bladder → mechanism for VUR, OU, DCS, KA (Mackie Stephens hypothesis)

- *Tbx6* dose reduction results in ectopic neural tubes in place of posterior somites
 - Grobstein et al in the 1950’s demonstrated that neural tube is capable of attracting and inducing mesenchyme *in vitro*
 - Abnormal position of kidney mesenchyme → mechanism of DCS, KA
Conclusions and Future Directions

- *Tbx6* gene-dose reduction is sufficient to cause all categories of human CAKUT observed in the chromosome 16p11.2 microdeletion syndrome

- *Tbx6* is expressed in peri-cloacal mesenchyme at E9.5, but, surprisingly, never in the developing ureter or kidney

- We propose different mechanisms and explanations for the *TBX6* mutations causal role and the observed pleiotropy:
 - Failure of nephric duct insertion
 - Ectopic neural tubes
 - Failed or incomplete cloacal septation

- Future directions: studies aimed at understanding the transcriptional dysregulation resulting from TBX6 mutations and identification of potential intervention targets
Acknowledgements

Columbia University
Miguel Verbitsky, Ali Gharavi, Krzysztof Kiryluk, Jonathan Barasch, Shumyle Alam, Pasquale Casale, James McKiernan, Fangming Lin, Priya Krithivasan, Byum Hee Kil, David Goldstein, Cathy Mendelsohn, Virginia Papaioannou

Bari, Italy
Loreto Gesualdo, Milena Gigante

Belo Horizonte, Brazil
Ana Cristina Simoes Silva

Brescia, Italy
Francesco Scolari, Claudia Izza

Cagliari, Italy
Giuseppe Masnata

CHOP, Philadelphia
Hakon Hakonarson, Donna McDonald-McGinn, Elaine Zackai

CKiD Study
Bradley A. Warady, Susan L. Furth, Craig Wong

Dublin, Ireland
David Barton, John Darlow

Duke University
Nicholas Katsanis, Erica Davis

Genoa, Italy
Gian Marco Ghiggeri, Gianluca Caridi, Monica Bodria, Alba Carrea

Harvard University
Iain Drummond, Friedhelm Hildebrandt, Asaf Vivante

Milan, Italy
Daniele Cusi, The Hypergenes Consortium, Giovanni Conti, Domenico Santoro

Messina, Italy
Hana Flogelova

Olomouc, Czech Republic
Silvio Maringhami

Palermo, Italy
Landino Allegri

Paris, France
Cecile Jeanpierre

PRCM, Poland
Anna Materna-Kirylyuk, Anna Latos-Bielska, Marcin Zaniew

Skopje, Macedonia
Velibor Tasic, Zoran Guev

Split, Croatia
Marijan Saraga, Mirna Saraga Babic, Kristina Drnasin

U. Michigan, Ann Arbor
Edgar Otto, Matthew Sampson

VUMC, Amsterdam
Rik Westland, Johanna van Wijk

Yale University
Richard Litton

Funding:
NIDDK: R01DK103184, R01DK115574, R21DK098531, U54DK104309, P20DK116191
Joint NIH MOH Finalized Research Grant

Patients and family members

Sanna-Cherchi Lab
Jerry Martino
Dina Ahram
Qingxue Liu
Juntao Ke
Yask Gupta
Tze Yin Lim
Gina Jin
Alejandra Perez

Mendelsohn Lab

AHA Grant-in-Aid
Paul Marks Scholar
Irving Institute
Columbia CTSA
Precision Medicine Pilot Award