Effects of aging in the prostate

Teresa Liu, Ph.D.
K Scholar
BPH/LUTS is multifactorial disease

Adapted from Liu et al, 2019
Hallmarks of Aging

Adapted from: https://doi.org/10.1016/j.cell.2013.05.039
Cellular senescence
Mitochondrial dysfunction
Complex I dysfunction

Ryan J. Mailloux Redox Biol 2015; 4:381-98

Hypothesis

• Accumulation of cellular senescence and mitochondrial dysfunction in the prostate results in an increase in prostatic fibrosis leading to an increase in lower urinary tract dysfunction.
Conclusions

- Fibrosis increases with age in mice and men
- Cellular senescence increases with BPH/LUTD
- Mitochondrial dysfunction corresponds to age and disease
- Pirfenidone, an antifibrotic and a senolytics, can reverse fibrosis and mitochondrial dysfunction
Future directions

• Further examine the effect of pirfenidone on mitochondrial dysfunction and cellular senescence.
• Examine the effect of drugs that specifically bypass complex I to reverse mitochondrial dysfunction.
Acknowledgements

• Ricke Lab
• UW – Madison O’Brien Center
• UT-Southwestern
 • Doug Strand
• UW – Madison Institute on Aging
 • Roz Anderson
• UW – Madison K12
 • Dale Bjorling

• University of Pittsburgh
 • Don DeFranco
 • Tim Greenamyre
 • Bruce Freeman
 • Shruti Shiva/Anne Newman
• UCSF
 • Scott Bauer
• Genentech
 • Andrey Shaw
• NIA

NIH National Institute on Aging